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Abstract—In the finite-element solution of heat conduction problems with phase change, the singular

behaviour of the specific heat near the phase-change point causes special problems. These problems can be

overcome by lumping the thermal capacitance of the material at the nodes, to obtain a diagonal capacitance

matrix. In this way the specific heat can be unambiguously calculated. The lumped-capacitance principle was

combined with the explicit enthalpy method and Pham’s three-level enthalpy method. Tests against freezing

problems show that for Stefan problems both resulting methods are more accurate than previous three-level
distributed capacitance methods.

INTRODUCTION

NuMEeErOUs methods have been proposed for the
numerical solution of heat conduction processes with
phase change, as reviewed for example by Fox [1],
Furzeland [2] and Crank [3]. Of these methods, many
can deal only with situations where a sharp phase-
change boundary exists, and thus do not apply to the
freezing of many materials of interest such as solutions,
foodstuffs or alloys. Others are restricted to one-
dimensional problems.

This paper will concentrate on the so-called ‘weak
solution’ [4] methods, which do not explicitly make use
of the phase-change boundary and so are free of the
restrictions mentioned above. A single partial
differential equationis used to describe the heat transfer
process throughout the material (rather than one
equation for each phase). The differential equation can
be written in one of two ways:

¢ aa—f = div [k grad (T)] 1)
or
aa—ft{ = div [k grad (T)]. @)

Equation (1) is the basis of temperature methods,
while (2) is the basis of enthalpy methods.

Temperature methods

Temperature methods have been used in conjunc-
tion with both finite-difference [5-7] and finite-
element schemes [8, 9]. Their major drawback is that
the specific heat ¢ appears in the partial differential
equation. Near the phase-change temperature, ¢
changes extremely rapidly and may tend towards
infinity, and the equation becomes highly non-linear.
Pham [10] reviews various ways proposed to overcome
this problem. Of these, the most convenient (because of

its avoidance of iteration and unconditional stability) is
Lees’ [11] three-level scheme in which equation (1) is
approximated by:

c(T™*2—T™)/2At = {div [k grad (T™*?)]
+div [k grad (T™* )] +div [k grad (T™])/3  (3)

and thermal properties are evaluated at the middle time
level. Oscillations are often observed with non-linear
problems and so the following ‘damping equation’[12]
is usually applied when updating at each time step:

™ = (Tm+2+TM+1+Tm)/3. (4)

The singular behaviour of ¢ still causes problems, and
various other approximations have been resorted to.
Comini et al. [8] assume that the enthalpy H follows the
same distribution function as the temperature 7, and
calculate the specific heat from:

oH [oT +6H orT +6H oT L)
c=|—/—+—/—+—/—]/3.
ox| dx dy/dy 0z] Oz
This equation was subsequently modified by Comini
and Del Giudice [9] for the two-dimensional situation

to:
J0H oT oT \? aT \?
W‘*a‘y')/ [(a—) +(E) ] ©

0H oT

€= 0x 0x

These modifications prevent jumping of the latent
heat peak, but it cannot be said that they have a clear
physical basis. Morgan et al. [ 13] suggest that ¢ should,
instead, be calculated from the temperature and
enthalpy changes at the previous time levels, m and
m+ 1. This constitutes a deviation from the three-level
scheme (in which properties should be evaluated at the
mid-level), and thus reasonably small time steps must
still be used. Cleland et al. [14] use direct numerical
integration over each element to calculate the specific
heat. This method works only if latent heat release is
gradual rather than sharp.
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¢ volumetricheat [Jm 3K 1]

C global capacitance matrix

fu, fr functions relating temperature to
enthalpy and vice-versa

global forcing vector

enthalpy [J m™3]

thermal conductivity [Wm ™! K 1]
global conductance matrix

latent heat [J m ™3]

element shape function related to node i
heat flow into a node

time [s]

At length of time step [s]

T temperature [°C]

T nodal temperature vector

SR oz R A DT

NOMENCLATURE

T; freezing point [°C]

T, initial temperature

¥V  volume [m*]

X, ¥,z space co-ordinates [m]
o thermal diffusivity.

Superscripts
(e) relating to element
m  time level
*  estimated value.

Subscript
i ator associated with node i
! unfrozen phase
s  frozen phase.

Enthalpy methods

Enthalpy methods [15, 16] do not suffer from the
drawbacks mentioned above, and furthermore are very
simple to implement [3]. The major disadvantage is
that because a highly non-linear function, T(H), is
involved [equation (2)], an explicit scheme must
usually be employed, with consequent stability
problems. Implicit schemes have been proposed such as
Longworth’s [17] and Furzeland’s [2] but they require
iteration at each time step and are less efficient in terms
of computer time [ 10, 18].

Three-level enthalpy method

Recently, Pham [10] proposed a method that
combines the advantages of three-level temperature
methods and enthalpy methods, without recourse to
iteration or any of the approximations listed above.
Pham’s method uses a finite difference, three-level
temperature scheme with two modifications:

(i)  Atthestart of each time step, the enthalpy change
AH¥ at each node is estimated from the local
temperature profile at the intermediate time level.
The estimated new temperature T¥ is calculated
from the estimated new enthalpy H¥. The specific
heat is then defined as:

et = AH¥/ATY. N

(i) Attheend ofthe time step, as a precaution against
jumping of the latent heat peak, the enthalpy at
each node is calculated from:

HP'" 2 = fg(TH+ e (TP 2 =TT) (8)
and the new temperature corrected to:
T7* 2(corrected) = f{HI*?). 9)

Pham showed that this method is more efficient and
robust than either previous enthalpy methods or
previous temperature methods for a wide range of

problems (cooling with constant properties, sharp
phase change, gradual phase change).

Both the explicit enthalpy method and Pham’s
method rely on the ability to calculate explicitly the
heat gain by each node. However, in conventional
finite-element schemes, the heat gain by each node is
not explicitly defined : increases in temperature at one
node also affect enthalpy changes at other nodes. This
paper proposes to enable enthalpy methods and
Pham’s method to be applied to finite-element schemes
by lumping capacitances at the nodes.

THEORY

Both the finite-element and finite-difference sol-
utions of transient field problems involve solving at
each time step a matrix equation of the form:

Cd—T+KT+F=0. (10)
dt

The major difference is that the global capacitance
matrix C is diagonal in the finite-difference formulation
and non-diagonal in the finite-element formulation.
When C is diagonal, the rate of heat gain at each
individual node, g; = C;(dT;/dt), can be explicitly
calculated from the rest of equation (10) if the
temperatures T;s are known:

4= Ciid—Ti = _2 KyT;—F;.
dt S

Itis well-known that the capacitance matrix C can be
diagonalized by assuming the capacitance, or thermal
mass, to be lumped at the nodes [19, 20]. For phase-
change situations, this diagonalization is a major
advantage : the variation of ¢ in space ceases to be a
problem. We shall therefore lump the ‘thermal volume’
of each element at the nodes, for example according to:

(11)
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Ve = j N;dV. (12)
yia)

Other lumping methods, which may differ from
equation (12) in the case of higher-order elements, are
discussed by Zienkiewicz [19]. If simplex elements are
used, each element’s thermal mass is equally divided
between its vertices. By summing over all the elements
in the usual manner, each node i will have associated
with it a thermal volume:

V=Y ve. (13)

Explicit enthalpy method

Using Euler’s forward-difference scheme, the heat
flow to each node can be calculated by using equation
(11) at the previous time level, m:

4 =—Y KyTy—FT.

J

(14

The new nodal enthalpy is then calculated from:
HP*! = HI'+q,At/V; (13)

where V] is given by equation (13). The nodal tem-
peratures T7*! are then calculated from H?*! using
the enthalpy-temperature function.

In practice, the global capacitance matrices C,K and
F do not have to be calculated and stored when an
explicit method is used. The nodal heat gain ¢{® can be
calculated element-by-element, and accumulated into
the nodal enthalpy array as one goes from one element
to another. This is a very simple procedure to
implement and avoids many of the problems associated
with conventional (distributed mass) finite elements:
computer memory requirements, matrix inversion,
banded matrix handling. The manner in which nodes
are numbered is also immaterial. It is therefore ideal for
users whose requirements are occasional or limited, or
who want to handle reasonably large problems on
small computer installations.

Three-level enthalpy method
Pham’s [10] three-level enthalpy method consists of
a specific-heat-estimating step and a temperature-
correction step. The first step uses equation (11) at the
middle time level m + 1 to estimate the rate of heat gain :
4= _Z K$?+1)T§m+1)*—F$m+l). (16)
J
The enthalpy change between levels m and m+2 at
node i is then:

AH}¥ = 2q,A1/V,. 17
Hence the estimated new nodal enthalpy is:
H¥ = H'+ AH¥ (18)
the estimated new temperature is:
TY = f{H}) (19)
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and the specific heat at the middle time level is:
Pl = AHMTY—T7). (20)

The values of ¢"*! from equation (20) can then be
used to calculate the lumped C-matrix.

After the finite-element equation (10) has been
solved, the following temperature correction step is
applied :

T *(corrected) = fr[f(TT) + ¢ (TP = TT)).
o2y

The computer is unable to handle equation (20) when
T¥ = TT'; ie. when the step change in the enthalpy-
temperature is encountered. Several methods may be
used to overcome this problem:

(i) Set T"*2? = T™ and eliminate T?*2 from the set
of equations, in a manner similar to the handling
of boundary conditions of type 1 (prescribed
temperature) [21].

(i) Give the step change in enthalpy (or latent heat
peak) a finite but arbitrarily small width, to
prevent ¢*! in equation (20) from becoming

infinite.

(iii) Give ¢**! an arbitrary large value.

The second approach is the most convenient and will
be used in this paper : the latent heat is assumed to be
released over a range of 0.01°C. However, it must be
realized that this finite step change is only a device for
computational convenience, and is not essential to the
methods of this paper (in contrast to some previous
methods where a finite and reasonably large latent peak
width is essential).

TEST PROBLEMS

1. Freezing of a slab of infinite area

Asslab of infinite area and 148 mm thick is initially at
0°C. At time 0, the surface temperature is suddenly
brought to —30°C (boundary condition of type 1). The
properties of the material are: T; = 0°C, ¢ = 2 x 108
Im3K L, L=2x10Tm 3 k=1Wm 'K
Calculate the time for the freezing front to reach the
centre.

The test problem is one-dimensional, but two-
dimensional elements will be used to solve it, since in
one dimension the lumping of capacitances makes the
simplex version of finite elements identical with finite
differences. A strip of material 74 mm long x 7.5 mm
wide was considered (Fig. 1).

Both distributed-capacitance and lumped-capaci-
tance methods were tested. In the former, direct specific
calculation, Comini et al’s [8] formula [equation
(5)], Comini and Del Guidice’s [9] formula, and
Morgan et al’s [13] formula were tried.

Table 1 shows that Morgan et al.’s formula [13] does
not handle this problem very well, because the phase-
change boundary is very sharp. In their paper, phase
change is assumed to take place over a range of about
1°C and the time step must be appropriately selected.



288 Q. T. PHAM

74 mm

£ .
A
['s)

~ 7

Fi1G. 1. Finite-element grid for freezing of a slab.

Direct specific heat calculation has the same problem.
Comini et al’s method [8] does not yet converge at time
steps as low as 2 s, and appears to overshoot the true
solution by at least 70%;,. Comini and Del Giudice’s
method [9] is also slow to converge, and appears to
tend to a solution 13%; larger than the analytical one.
On the other hand, the lumped-capacitance methods
tend to a solution only 0.5% outside the analytical one.
The explicit enthalpy method has satisfactorily
converged at At = 20 s and Pham’s three-level method
at At = 100s when dampingis not used and 200 s when
damping is used. (Convergence is assumed to be
obtained when the solution is within 0.5% of the final
solution.)

The position of the freezing front can be found by
assuming that when it reaches a node, the enthalpy at
that node ishalf-way between start-of-freezing and end-
of-freezing enthalpies (since on average halfthe thermal
mass of the node belongs to elements nearer the surface
and half to elements further from the surface.) Figure 2
shows that the movement of the freezing front with time
as calculated by the present method and the analytical
solution [22, p. 283] are in good agreement.

2. Freezing with step change in thermal conductivity
A semi-infinite body of water (¢, = 4.186 x 106 Jm ~3
K™% ¢ =206x10°F m™* K™, k, =056 W m™!
KLk =23Wm 'K, L=333x10Im™3)is
frozen by suddenly bringing the surface temperature to
—30°C. Calculate the position of the freezing front at
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F1G. 2. Frozen thickness, problem 1 : @ finite-element solution
(lumped capacitance) ; —— analytical solution.

various times, for initial water temperatures of 0° and
40°C.

The analytical solution is given in Carslaw and
Jaeger [22, p. 283]. The finite-element solution is
obtained by a grid similar to that in Fig. 1 but with
10-mm node spacing and extending 1 m into the body.
For the duration considered, there is no perceptible
cooling of the innermost nodes, so the grid adequately
represents a semi-infinite body.

A strict solution would require integration of the
thermal conductivity k over each element. k has a step
change at the freezing point and cannot be represented
by a polynomial; therefore, an exact numerical
integration is not feasible. However, past experience
with both finite-difference {10, 237 and finite-element
[14] methods suggests that a single-point sample is
sufficient; i.e. in each element k is calculated at the

Table 1. Results of finite-element calculations for freezing problem (theoretical solution 20020's)

Time step Methods
(s) Al A2 A3 A4 B1 B2 C
2 9630 10544 33994 22651 20117 20127 20121
S 9261 7682 30402 22530 20117 20122 20115
10 10396 1955 24273 22440 20117 20123 20110
20 3861 9812 26500 20860 20118 20126 20101
50 3901 4250 24950 19500 20128 20140 18700
100 9200 7897 22400 19500 20060 20163 Diverge
200 3791 3197 12000 8200 6691 20062 —
500 14 756 499 499 5095 7281 —
Final
%, error ? ? ? 13.1 0.5 0.5

Methods: A, finite-element method with distributed capacitance, three-level scheme
with damping [equation (4)]. A1, Direct specific heat calculation with seven-point numerical
integration. A2, Morgan et al.’s [13] specific heat formula. A3, Comini et al’s [8] specific heat
formulae. A4, Comini and Del Giudice’s [9] specific heat formula.

B, Finite-element method with lumped capacitance, three-level enthalpy scheme (this paper).
B1, Without damping. B2, With damping [equation (4)].

C, Finite-element method with lumped capacitance, explicit enthalpy scheme (this paper).
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F1G. 3. Frozen thickness, problem 2 : @ finite-element solution
(lumped capacitance}; —— analytical solution.

average temperature (T, + T, + T,)/3, where T; are the
vertex temperatures.

Results from the present method are shown in Fig. 3
for the two different starting temperatures. Errors (if
any) due to the variation in k would be present only for
the 40°C case, since no heat is conducted through
unfrozen material when the initial temperature is 0°C.
For the latter case, the frozen thickness prediction is
accurate to 0.5 mm or better, while for the former, this
thickness is underpredicted by about 1 mm (1/10 the
mesh size). Thus, there is only a very slight decrease in
accuracy due to the approximation used for &, despite
the high initial temperature of 40°C and the relatively
coarse grid (the range of frozen thickness in Fig. 3
covers only 4-6 meshes).

3. Freezing of a corner region

The corner region of a liquid body extending
infinitely in the positive x and y-directions is frozen by
bringing the surface temperature to — 1.0 at time t = 0.
Thermal properties are: k;=k,=1, ¢, =c, =1,
L = 1.5613 in one case, 0.25 in the other.

The grid of Fig. 4 was used to represent the body. The
position of the front is invariant with respect to x/\/m
and y/,/4at, and plotted in Fig. 5, together with the
analytical solutions [24]. Very good agreement is
obtained.

DISCUSSION AND CONCLUSIONS

Basically the main difficulty in the finite-element
solution of heat conduction problems with phase
change is that the changes in specific heat must be
tracked in both time and space. This paper proposes to
eliminate the space variation by lumping capacitances
at the nodes. In a way, the proposed method is similar to
that of Zienkiewicz et al. [25]. These authors lumped
the latent heat at the nodes, but not the sensible heat.
Apart from programming complications, this ap-
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F1G. 4. Finite-element grid for corner freezing problem.

proach limits the use of their method to cases where
latent heat can be clearly defined, while the present
method can readily be used to solve gradual phase-
change problems (such as the freezing/melting of
foodstuffs and alloys).

Compared to previous methods, the advantages of
the proposed lumped-capacitance methods are :

1. Accuracy, as shown in the test problems. As long as
the grid is sufficiently fine, any degree of accuracy
can be obtained. Although there are reservations in
the literature about the use of lumped capacitances
in some other types of problems, their use in heat
transfer is well proven [19]. In fact, the one-
dimensional simplex formulation of finite elements
with lumped capacitance is identical with the finite-
difference formulation. It can be expected that
accuracy will be even better in phase-change

2.0

1.5F

1.0p

y/V/40t

0.5 / 3

L=1.5613, T, =0.0

0.0 i " L
0.0 0.5 1.0 1.5 2.0

x/\/m

FIG. 5. Freezing front position, problem 3 (corner region): @
finite-element solution (lumped capacitance); analytical
solution.
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problems than in non-phase change problems, since
for pure phase change (i.e. with zero sensible heat)
the exact analytical solution has a lumped-
capacitance form; i.e. a slab, infinite cylinder or
sphere with all its thermal mass lumped half-way
between surface and centre freezes in exactly the
same time as an equivalent body with distributed
mass [26].

2. Simplicity and consistency in visualization. For
example, the problem of enthalpy and temperature
distributions in an element does not have to be
considered.

3. Ease of implementation, for the explicit enthalpy
method. For the occasional user, the basic concepts
and equations are easy to grasp, and computer
implementation does not involve special matrix
handling techniques. Memory storage requirements
are reduced, enabling reasonably large problems to
be solved without difficulty.

4. Computational speed (for Pham’s three-level
method). Convergence is reached at relatively large
time steps for Stefan-type problems.

Acknowledgements— Analytical solutions to the tests prob-
lems were calculated using computer programs written by Dr
A. K. Fleming, to whom thanks are due. The author also
thanks Dr A. C. Cleland and Mr D. J. Cleland, for their helpful
comments.

REFERENCES

1. L. Fox, What are the best numerical methods? In Moving
Boundary Problems in Heat Flow and Diffusion (Edited by
J. R. Ockendon and W. R. Hodgkins), pp. 210-241.
Clarendon Press, Oxford (1975).

2. R. M. Furzeland, A comparative study of numerical
methods for moving boundary problems, J. Inst. Maths
Applics 26, 411-429 (1980).

3. J. Crank, How to deal with moving boundaries in thermal
problems. In Numerical Methods in Heat Transfer (Edited
by R. W. Lewis, K. Morgan and O. C. Zienkiewicz), pp.
177-200. Wiley, New York (1981).

4. D. R. Atthey, A finite difference scheme for melting
problems based on the method of weak solutions. In
Moving Boundary Problems in Heat Flow and Diffusion
(Edited by J. R. Ockendon and W. R. Hodgkins), pp. 182—
191. Clarendon Press, Oxford (1975).

5. C. Bonacina and G. Comini, On a numerical method for
the solution of the unsteady-state heat conduction
equation with temperature dependent parameters, Proc.
13th Int. Congress on Refrigeration, Vol. 2, p. 329 (1971).

6. C. Bonacina and G. Comini, On the solution of the non-
linear heat conduction equations by numerical methods,
Int. J. Heat Mass Transfer 16, 581-589 (1973).

7. A.C.Cleland and R. L. Earle, Prediction of freezing times

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.
22.
23.

24.

25.

26.

forfoodsin rectangular packages, J. Food Sci. 44,964-970
(1979).

. G. Comini, S. Del Giudice, R. W. Lewis and O. C.

Zienkiewicz, Finite element solution of non-linear heat
conduction problems with special reference to phase
change. Int. J. Numer. Methods Engng 8, 613-624 (1974).

. G. Comini and S. Del Giudice, Thermal aspect of

cryosurgery, J. Heat Transfer 98, 543 (1976).

Q. T. Pham, A fast, unconditionally stable finite difference
scheme for conduction heat transfer with phase change,
Int. J. Heat Mass Transfer 28, 2079-2084 (1985).

M. Lees, A linear three-level difference scheme for
quasilinear parabolic equation, Math. Comput. 20, 516
(1976).

L. Rebellato, S. Del Giudice and G. Comini, Finite
element analysis of freezing processes in foodstuffs,
J. Food Sci. 43, 239-243; 250 (1978).

K. Morgan, R. W. Lewis and O. C. Zienkiewicz, An
improved algorithm for heat conduction problems with
phase change, Inst. J. Numer. Methods Engng 12, 1191~
1195 (1978).

D. J. Cleland, A. C. Cleland, R. L. Earle and S. J. Byrne,
Prediction of rates of freezing, thawing and cooling in
solids of arbitrary shape using the finite element method,
Int. J. Refrig. 7, 6-13 (1984).

N. R. Eyres, D. R. Hartree, J. Ingham, R. Jackson, R. J.
Sarjantand J. B. Wagstaff, The calculation of variable heat
flow in solids, Trans. R. Soc. A240, 1 (1946).

V.R. Voller and M. Cross, Use of the enthalpy method in
the solution of Stefan problems. In Numerical Methods in
Thermal Problems (Edited by R. W. Lewis, J. A. Johnson
and W. R. Smith), pp. 91-101. Pineridge Press, Swansea,
UK. (1983).

. D. Longworth, A numerical method to determine the

temperature distribution around a moving weld pool. In
Moving Boundary Problems in Heat Flow and Diffusion
(Edited by J. R. Ockendon and W. R. Hodgkins), pp. 54—
61. Clarendon Press, Oxford (1975).

A. B. Crowley, Numerical solutions of phase change
problems, Int. J. Heat Mass Transfer 21, 215-219 (1978).
O. C. Zienkiewicz, The Finite Element Method. 3rd edn.
McGraw-Hill, New York (1977).

G. E. Myers, The critical time step for finite-element
solutions to two-dimensional heat conduction transients,
Trans Am. Soc. mech. Engrs, Series C, J. Heat Transfer
100, 120-127 (1978).

L. J. Segerlind, Applied Finite Element Analysis. Wiley,
New York (1976).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in
Solids, 2nd edn. Clarendon Press, Oxford (1959).
A.C.Cleland and R. L. Earle, A comparison of analytical
and numerical methods for predicting the freezing times of
foods, J. Food Sci. 42, 1390-1395 (1977).

H. Budhia and F. Kreith, Heat transfer with melting or
freezingin a wedge, Int. J. Heat Mass Transfer 16,195-211
(1973).

O. C. Zienkiewicz, C. J. Parekh and A. J. Wills, The
application of finite elements to heat conduction
problems involving latent heat, Rock Mech. 5, 65-76
(1973).

R. Plank, Beitrage zur Berechnung und Bewertung der
Gefriergeschwindigkeit von Lebensmitteln. Annin ges.
Kalteind. 10, Beih Beihe 3: 1 (1941).



Lumped capacitance in the solution of heat conduction problems

USAGE DE LA CAPACITANCE LOCALISEE DANS LA RESOLUTION PAR ELEMENTS
FINIS DES PROBLEMES DE CONDUCTION THERMIQUE AVEC CHANGEMENT DE
PHASE

Résumé—Dans les problémes de conduction thermique avec changement de phase et leur résolution par
éléments finis, le comportement singulier de la chaleur massique prés du changement de phase cause des
difficultés spéciales. Celles-ci peuvent étre surmontées en localisant la capacitance thermique du matériau aux
noeuds pour obtenir une matrice capacitance diagonale. De cette maniére la chaleur massique peut étre
calculée sans ambiguité. Le principe de capacitance localisée est combiné avec la méthode enthalpique
explicite et laméthode enthalpique d trois niveaux de Pham. Des tests de probiéme de gel montrent que pour les
problémes de Stefan, les méthodes résultantes sont plus précises que les méthodes antérieures de capacitance a
trois niveaux.

DIE ANWENDUNG KONZENTRIERTER KAPAZITATEN BEI DER FINITE- ELEMENT-
LOSUNG VON PROBLEMEN DER WARMELEITUNG MIT PHASENANDERUNG

Zusammenfassung— Fiir die Losung von Problemen der Wirmeleitung mit Phasendnderung mit Hilfe finiter
Elemente verursacht das abnorme Verhalten der spezifischen Wirmekapazitit im Bereich der
Phaseninderung besondere Probleme. Diese Probleme kénnen durch Konzentration der Wirmekapazitét
auf Knotenpunkte iiberwunden werden, um eine diagonale Kapazitits-Matrix zu erhaiten. Auf diese Weise
kann die spezifische Wirmekapazitit eindeutig berechnet werden. Das Prinzip der konzentrierten Kapazititen
wurde mit der expliziten Enthalpie-Methode und Pham’s “three-level”-Methode kombiniert. Tests fiir
Erstarrungsprobleme zeigen, daB bei Stefan-Problemen diese beiden weiterentwickelten Methoden genauer
sind als die bisher verwendete “three-level”-Methode.

MCIOJIb30BAHHUE COCPEJOTOYEHHON TEIIJIOEMKOCTH ITPY PEWIEHUH 3AJAY
TETUIOTIPOBOAHOCTHU C ®A3OBBIM ITEPEXOZIOM METOJOM KOHEYHBIX
DJIEMEHTOB

Ansorauns—IIpy pelueHuH 3a0a4 TEILIONPOBOJHOCTH ¢ Ha30BBIM MEPEXOOM METOAOM KOHEYHBIX 3JIe-
MEHTOB BbI3bIBAaeT 3aTpyHHEHNE CHHIYJIAPHOE NOBEACHHE TENIOEMKOCTH BOMU3H TOYKM (Pa3oBoro nepe-
Xx0da. DTH TPYOHOCTH MOXHO OOOMTH, BBelUs COCPENOTOMEHHYIO TEMJIOEMKOCTh MaTepHana B y3jax
CEeTKM ¥ IOJIy4Yas TakuM o0pa3oM IHaroHajJbHYIO MaTpHUY TelloeMKocTeR. B aTtoM ciyyae TemsoeM-
KOCTb ODpedensieTcs OnHO3HA4HO. [IpHHLMN COCPENOTOYEHHOH TEMIOEMKOCTH HCIOJIB3OBAJICS COB-
MECTHO C METOJOM SIBHOM 3HTAJILOHHM H METOAOM TPEeXypOBHEBOit 3HTanbnnu Pama. TecToBble pacueTsi
[0 3aMep3aHHIO [I0Ka3ajH, YTO TaKoi MoAXod npH peleHuw 3agay CTedaHa sBisgeTcs Gojee TOYHBIM,
YeM KCIIOJIb30BABIINECH PAaHEe METOAB! TPEXYPOBHEBOTO PACHIPEe/ICHHS TEMIOEMKOCTH.
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