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Abstract-In the finite-element solution of heat conduction problems with phase change, the singular 
behaviour of the specific heat near the phase-change point causes special problems. These problems can be 
overcome by lumping the thermal capacitance of the material at the nodes, to obtain a diagonal capacitance 
matrix. In this way the specific heat can be unambiguously calculated. The lumped-capacitance principle was 
combined with the explicit enthalpy method and Pham’s three-level enthalpy method. Tests against freezing 
problems show that for Stefan problems both resulting methods are more accurate than previous three-level 

distributed capacitance methods. 

INTRODUCTION 

NUMEROUS methods have been proposed for the 
numerical solution of heat conduction processes with 
phase change, as reviewed for example by Fox [l], 
Furzeland [2] and Crank [3]. Of these methods, many 
can deal only with situations where a sharp phase- 
change boundary exists, and thus do not apply to the 
freezing of many materials of interest such as solutions, 
foodstuffs or alloys. Others are restricted to one- 
dimensional problems. 

This paper will concentrate on the so-called ‘weak 
solution’ [4] methods, which do not explicitly make use 
of the phase-change boundary and so are free of the 
restrictions mentioned above. A single partial 
differential equation is used to describe the heat transfer 
process throughout the material (rather than one 
equation for each phase). The differential equation can 
be written in one of two ways : 

c g = div [k grad (T’)] (1) 

or 

CYH 
at = div [k grad (T)]. 

Equation (1) is the basis of temperature methods, 
while (2) is the basis of enthalpy methods. 

Temperature methods 
Temperature methods have been used in conjunc- 

tion with both finite-difference [5--73 and finite- 
element schemes [S, 91. Their major drawback is that 
the specific heat c appears in the partial differential 
equation. Near the phase-change temperature, c 
changes extremely rapidly and may tend towards 
infinity, and the equation becomes highly non-linear. 
Pham [lo] reviews various ways proposed to overcome 
this problem. Of these, the most convenient (because of 

These modifications prevent jumping of the latent 
heat peak, but it cannot be said that they have a clear 
physical basis. Morgan et al. [13] suggest that c should, 
instead, be calculated from the temperature and 
enthalpy changes at the previous time levels, m and 
m+ 1. This constitutes a deviation from the three-level 
scheme (in which properties should be evaluated at the 
mid-level), and thus reasonably small time steps must 
still be used. Cleland et al. [14] use direct numerical 
integration over each element to calculate the specific 
heat. This method works only if latent heat release is 
gradual rather than sharp. 

its avoidance ofiteration andunconditional stability)is 
Lees’ [1 l] three-level scheme in which equation (1) is 
approximated by : 

c(T”‘+’ - Tm)/2At = {div [k grad (T”+‘)] 

+div [k grad (T”+‘)] +div [k grad (TM)]}/3 (3) 

and thermal properties are evaluated at the middle time 
level. Oscillations are often observed with non-linear 
problems and so the following ‘damping equation’ [ 121 
is usually applied when updating at each time step : 

T” = (Tm+‘+Tm+‘+T’“)/3. (4) 

The singular behaviour of c still causes problems, and 
various other approximations have been resorted to. 
Comini et al. [8] assume that the enthalpy H follows the 
same distribution function as the temperature T and 
calculate the specific heat from : 

This equation was subsequently modified by Comini 
and Del Giudice [9] for the two-dimensional situation 
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NOMENCLATURE 

c volumetric heat [J m- 3 K- ‘1 
C global capacitance matrix 
fH, fr functions relating temperature to 

enthalpy and vice-versa 
F global forcing vector 
H enthalpy [J m-3] 
k thermal conductivity [W m-i Km ‘1 
K global conductance matrix 
L latent heat [J m-3] 
Ni element shape function related to node i 

4 heat Bow into a node 
t time [s] 
At length of time step [s] 
T temperature [“Cl 
T nodal temperature vector 

T, freezing point c”C] 
T, initial temperature 
V volume [m3] 
x, y, z space co-ordinates [m] 
a thermal diffusivity. 

Superscripts 
(e) relating to element 
m time level 
* estimated value. 

Subscript 

f 
at or associated with node i 
unfrozen phase 

S frozen phase. 

Enthalpy methods 
Enthalpy methods [15, 161 do not suffer from the 

drawbacks mentioned above, and furthermore are very 
simple to implement [3]. The major disadvantage is 
that because a highly non-linear function, T(H), is 
involved [equation (2)], an explicit scheme must 
usually be employed, with consequent stability 
problems. Implicit schemes have been proposed such as 
Longworth’s [ 173 and Furzeland’s [Z] but they require 
iteration at each time step and are less efficient in terms 
of computer time [lo, 183. 

Three-level enthalpy method 
Recently, Pham [lo] proposed a method that 

combines the advantages of three-level temperature 
methods and enthalpy methods, without recourse to 
iteration or any of the approximations listed above. 
Pham’s method uses a finite difference, three-level 
temperature scheme with two modifications : 

(9 

(ii) 

At the start of each time step, the enthalpy change 
AH: at each node is estimated from the local 
temperature profile at the intermediate time level. 
The estimated new temperature T: is calculated 
from the estimated new enthalpy HF. The specific 
heat is then defined as : 

,y+l= AHf/AT:. (7) 

At the end of the time step, as a precaution against 
jumping of the latent heat peak, the enthalpy at 
each node is calculated from : 

H7’+2 = &(T~)+c~+~(T;+‘-T~) (8) 

and the new temperature corrected to : 

Ty+2(corrected) = fT(HTe2). (9) 

It is well-known that the capacitance matrix C can be 
diagonalized by assuming the capacitance, or thermal 
mass, to be lumped at the nodes [19, 201. For phase- 
change situations, this diagonalization is a major 

Pham showed that this method is more efficient and advantage: the variation of c in space ceases to be a 
robust than either previous enthalpy methods or problem. We shall therefore lump the ‘thermal volume’ 
previous temperature methods for a wide range of of each element at the nodes, for example according to : 

problems (cooling with constant properties, sharp 
phase change, gradual phase change). 

Both the explicit enthalpy method and Pham’s 
method rely on the ability to calculate explicitly the 
heat gain by each node. However, in conventional 
finite-element schemes, the heat gain by each node is 
not explicitly defined : increases in temperature at one 
node also affect enthalpy changes at other nodes. This 
paper proposes to enable enthalpy methods and 
Pham’s method to be applied to finite-element schemes 
by lumping capacitances at the nodes. 

THEORY 

Both the finite-element and finite-difference sol- 
utions of transient field problems involve solving at 
each time step a matrix equation of the form : 

C%+KT+F=O. 

The major difference is that the global capacitance 
matrix C is diagonal in the finite-difference formulation 
and non-diagonal in the finite-element formulation. 
When C is diagonal, the rate of heat gain at each 
individual node, qi = Cii(d’IJdt), can be explicitly 
calculated from the rest of equation (10) if the 
temperatures Ts are known : 

qi = Cii z = -c Ki+ Fj. 
j 

(11) 
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vl” = s Ni dK (12) 
y(s) 

Other lumping methods, which may differ from 
equation (12) in the case of higher-order elements, are 
discussed by Zienkiewicz [ 191. If simplex elements are 
used, each element’s thermal mass is equally divided 
between its vertices. By summing over all the elements 
in the usual manner, each node i will have associated 
with it a thermal volume : 

v, = c vl”‘. (13) 
e 

Explicit enthalpy method 
Using Euler’s forward-difference scheme, the heat 

flow to each node can be calculated by using equation 
(11) at the previous time level, m : 

qi = -c K;Tj”-Fy. 
j 

(14) 

The new nodal enthalpy is then calculated from : 

K + ’ = Hy + qiAtf 6 (15) 

where 5 is given by equation (13). The nodal tem- 
peratures T;“+ ’ are then calculated from Hy+’ using 
the enthalpy-temperature function. 

In practice, the global capacitance matrices C, K and 
F do not have to be calculated and stored when an 
explicit method is used. The nodal heat gain 41’) can be 
calculated element-by-element, and accumulated into 
the nodal enthalpy array as one goes from one element 
to another. This is a very simple procedure to 
implement and avoids many ofthe problems associated 
with conventional (distributed mass) finite elements : 
computer memory requirements, matrix inversion, 
banded matrix handling. The manner in which nodes 
are numbered is also immaterial. It is therefore ideal for 
users whose requirements are occasional or limited, or 
who want to handle reasonably large problems on 
small computer installations. 

Three-level enthalpy method 
Pham’s [lo] three-level enthalpy method consists of 

a specific-heat-estimating step and a temperature- 
correction step. The first step uses equation (11) at the 
middle time level m + 1 to estimate the rate of heat gain : 

qi = -CK(ii”+‘)T:“+‘)-FI”+‘). (16) 
i 

The enthalpy change between levels m and m+2 at 
node i is then : 

AH; = 2qiAt/&. (17) 

Hence the estimated new nodal enthalpy is : 

H: = Hr+AH: (18) 

the estimated new temperature is : 

TT = fT(H;) (19) 

and the specific heat at the middle time level is : 

cf + 1 = AH:/(T; - Tr). (20) 

The values of cyfl from equation (20) can then be 
used to calculate the lumped C-matrix. 

After the finite-element equation (10) has been 
solved, the following temperature correction step is 
applied : 

Ty+*(corrected) =fT[fH(~)+c;+1(T~+2-T~)]. 

(21) 

The computer is unable to handle equation (20) when 
T? = TT ; i.e. when the step change in the enthalpy- 
temperature is encountered. Several methods may be 
used to overcome this problem : 

(i) Set Ty+2 = TT and eliminate rf2 from the set 
of equations, in a manner similar to the handling 
of boundary conditions of type 1 (prescribed 
temperature) [21]. 

(ii) Give the step change in enthalpy (or latent heat 
peak) a finite but arbitrarily small width, to 
prevent CT + l in equation (20) from becoming 
infinite. 

(iii) Give cf ” an arbitrary large value. 

The second approach is the most convenient and will 
be used in this paper : the latent heat is assumed to be 
released over a range of O.Ol”C. However, it must be 
realized that this finite step change is only a device for 
computational convenience, and is not essential to the 
methods of this paper (in contrast to some previous 
methods where a finite and reasonably large latent peak 
width is essential). 

TEST PROBLEMS 

1. Freezing of a slab of injnite area 
A slab of infinite area and 148 mm thick is initially at 

0°C. At time 0, the surface temperature is suddenly 
brought to - 30°C (boundary condition of type 1). The 
properties of the material are : K = O’C, c = 2 x lo6 
J mm3 K-‘, L = 2 x lo8 J rnm3, k = 1 W m-l K-l. 
Calculate the time for the freezing front to reach the 
centre. 

The test problem is one-dimensional, but two- 
dimensional elements will be used to solve it, since in 
one dimension the lumping of capacitances makes the 
simplex version of finite elements identical with finite 
differences. A strip of material 74 mm long x 7.5 mm 
wide was considered (Fig. 1). 

Both distributed-capacitance and lumped-capaci- 
tance methods were tested. In the former, direct specific 
calculation, Comini et al.% [S] formula [equation 
(S)], Comini and Del Guidice’s [9] formula, and 
Morgan et al.‘s [ 131 formula were tried. 

Table 1 shows that Morgan et al.‘s formula [ 133 does 
not handle this problem very well, because the phase- 
change boundary is very sharp. In their paper, phase 
change is assumed to take place over a range of about 
1°C and the time step must be appropriately selected. 
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FIG. 1. Finite-element grid for freezing of a slab. 

Direct specific heat calculation has the same problem. 
Comini et al.% method [8] does not yet converge at time 
steps as low as 2 s, and appears to overshoot the true 
solution by at least 70%. Comini and Del Giudice’s 
method [9] is also slow to converge, and appears to 
tend to a solution 13% larger than the analytical one. 
On the other hand, the lumped-capacitance methods 
tend to a solution only 0.5% outside the analytical one. 
The explicit enthalpy method has satisfactorily 
converged at At = 20 s and Pham’s three-level method 
at At = 100 s when damping is not used and 200 s when 
damping is used. (Convergence is assumed to be 
obtained when the solution is within 0.5% of the final 
solution.) 

The position of the freezing front can be found by 
assuming that when it reaches a node, the enthalpy at 
that node is half-way between start-of-freezing and end- 
of-freezing enthalpies (since on average half the thermal 
mass of the node belongs to elements nearer the surface 
and half to elements further from the surface.) Figure 2 
shows that the movement ofthefreezingfront with time 
as calculated by the present method and the analytical 
solution [22, p. 2831 are in good agreement. 

2. Freezing with step change in thermal conductivity 
A semi-infinite body of water (c, = 4.186 x lo6 J m - 3 

K-l, c, = 2.06 x lo6 J mm3 K-l, k, = 0.56 W m-l 
K-‘, k, = 2.3 W m-l K-‘,L=3.33x108 Jmm3)is 
frozen by suddenly bringing the surface temperature to 
- 30°C. Calculate the position of the freezing front at 

o: 
0 5cQo 10000 15000 2ooocl 

Time, s 

FIG. 2. Frozen thickness, problem 1: l finite-element solution 
(lumped capacitance); - analytical solution. 

various times, for initial water temperatures of 0” and 
40°C. 

The analytical solution is given in Carslaw and 
Jaeger [22, p. 2831. The finite-element solution is 
obtained by a grid similar to that in Fig. 1 but with 
lo-mm node spacing and extending 1 m into the body. 
For the duration considered, there is no perceptible 
cooling of the innermost nodes, so the grid adequately 
represents a semi-infinite body. 

A strict solution would require integration of the 
thermal conductivity k over each element. k has a step 
change at the freezing point and cannot be represented 
by a polynomial ; therefore, an exact numerical 
integration is not feasible. However, past experience 
with both finite-difference [IO, 231 and finite-element 
[14] methods suggests that a single-point sample is 
sufficient; i.e. in each element k is calculated at the 

Table 1. Results offinite-element calculationsforfreezingproblem(theoretica1 solution20020s) 

Time step 
(s) Al A2 A3 

Methods 
A4 Bl B2 C 

2 
5 

10 
20 
50 

100 
200 
500 

Final 
‘A error 

9630 10544 33994 22651 20117 20127 20121 
9261 7682 30402 22530 20117 20122 20115 

10396 1955 24273 22440 20117 20123 20110 
3861 9812 26500 20860 20118 20126 20101 
3901 4250 24950 19500 20128 20140 18700 
9200 7897 22400 19500 20060 20163 Diverge 
3791 3197 12000 8200 6691 20062 

14 756 499 499 5095 7281 

? ? ? 13.1 0.5 0.5 

Methods : A, finite-element method with distributed capacitance, three-level scheme 
with damping [equation (4)]. Al, Direct specific heat calculation with seven-point numerical 
integration. A2, Morgan et al.% 1131 specific heat formula. A3, Comini et al.3 [8] specific heat 
formulae. A4, Comini and Del Giudice’s [9] specific heat formula. 

B, Finite-element method with lumped capacitance, three-level enthalpy scheme (this paper). 
Bl, Without damping. B2, With damping [equation (4)]. 

C, Finite-element method with lumped capacitance, explicit enthalpy scheme (this paper). 
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Initial temp. 40% 

01~.“~““““‘,“‘.l 
0 2500 5000 7500 loo00 

Time, s 

FIG. 3. Frozen thickness, problem 2 : 0 finite-element solution 
(lumped capacitance); - analytical solution. 

average temperature (7’i + T, + T,)/3, where IT;: are the 
vertex temperatures. 

Results from the present method are shown in Fig. 3 
for the two different starting temperatures. Errors (if 
any) due to the variation in k would be present only for 
the 40°C case, since no heat is conducted through 
unfrozen material when the initial temperature is 0°C. 
For the latter case, the frozen thickness prediction is 
accurate to 0.5 mm or better, while for the former, this 
thickness is underpredicted by about 1 mm (l/10 the 
mesh size). Thus, there is only a very slight decrease in 
accuracy due to the approximation used for k, despite 
the high initial temperature of 40°C and the relatively 
coarse grid (the range of frozen thickness in Fig. 3 
covers only 4-6 meshes). 

3. Freezing of a corner region 
The corner region of a liquid body extending 

infinitely in the positive x and y-directions is frozen by 
bringing the surface temperature to - 1.0 at time t = 0. 
Thermal properties are: k, = k, = 1, c, = c, = 1, 
L = 1.5613 in one case, 0.25 in the other. 

The grid of Fig. 4 was used to represent the body. The 

position ofthe front is invariant with respect to x/& - 
and yf,/4at, and plotted in Fig. 5, together with the 
analytical solutions [24]. Very good agreement is 
obtained. 

DISCUSSION AND CONCLUSIONS 

Basically the main difficulty in the finite-element 
solution of heat conduction problems with phase 
change is that the changes in specific heat must be 
tracked in both time and space. This paper proposes to 
eliminate the space variation by lumping capacitances 
at the nodes. In a way, the proposed method is similar to 
that of Zienkiewicz et al. [25]. These authors lumped 
the latent heat at the nodes, but not the sensible heat. 
Apart from programming complications, this ap- 

FIG. 4. Finite-element grid for corner freezing problem. 

preach limits the use of their method to cases where 
latent heat can be clearly defined, while the present 
method can readily be used to solve gradual phase- 
change problems (such as the freezing/melting of 
foodstuffs and alloys). 

Compared to previous methods, the advantages of 
the proposed lumped-capacitance methods are : 

1. Accuracy, as shown in the test problems. As long as 
the grid is sufficiently fine, any degree of accuracy 
can be obtained. Although there are reservations in 
the literature about the use of lumped capacitances 
in some other types of problems, their use in heat 
transfer is well proven [19]. In fact, the one- 
dimensional simplex formulation of finite elements 
with lumped capacitance is identical with the finite- 
difference formulation. It can be expected that 
accuracy will be even better in phase-change 

““~ 
1.5 - 

ii 

I t p 1.0 

A, 

0.5 - 

L=1.5&3. T,=O.O 

0.0 '. 8 ""I “, 8.. 
0.0 0.5 1 .o 1.5 2.0 

x/&z 

FIG. 5. Freezing front position, problem 3 (corner region) : l 
finite-element solution (lumped capacitance.) ; - analytical 

solution. 
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problems than in non-phase change problems, since 
for pure phase change (i.e. with zero sensible heat) 
the exact analytical solution has a lumped- 
capacitance form; i.e. a slab, infinite cylinder or 
sphere with all its thermal mass lumped half-way 
between surface and centre freezes in exactly the 
same time as an equivalent body with distributed 
mass [26]. 
Simplicity and consistency in visualization. For 
example, the problem of enthalpy and temperature 
distributions in an element does not have to be 
considered. 
Ease of implementation, for the explicit enthalpy 
method. For the occasional user, the basic concepts 
and equations are easy to grasp, and computer 
implementation does not involve special matrix 
handling techniques. Memory storage requirements 
are reduced, enabling reasonably large problems to 
be solved without difficulty. 
Computational speed (for Pham’s three-level 
method). Convergence is reached at relatively large 
time steps for Stefan-type problems. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
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USAGE DE LA CAPACITANCE LOCALISEE DANS LA RESOLUTION PAR ELEMENTS 
FINIS DES PROBLEMES DE CONDUCTION THERMIQUE AVEC CHANGEMENT DE 

PHASE 

R&u&--Dans les probldmes de conduction thermique avec changement de phase et leur r&solution par 
Bl6ments finis, le comportement singulier de la chaleur massique pr*s du changement de phase cause des 
difficult& spCciales. Celles-ci peuvent Btre surmontCs en localisant la capacitance thermique du ma&au aux 
noeuds pour obtenir une matrice capacitance diagonale. De cette man&e la chaleur massique peut &re 
calculde sans ambiguit6. Le principe de capacitance localis5.e est combini avec la m6thode enthalpique 
explicite et la mCth?de enthalpique g trois niveaux de Pham. Des tests de probl*me de gel montrent que pour les 
problemes de Stefan, les mbthodes rtsultantes sent plus prkcises que les mkthodes an&ewes de capacitance P 

trois niveaux. 

DIE ANWENDUNG KONZENTRIERTER KAPAZITXTEN BE1 DER FINITE- ELEMENT- 
LOSUNG VON PROBLEMEN DER WARMELEITUNG MIT PHASENANDERUNG 

Zusammenfassung-Fiir die L6sung von Problemen der Wlrmeleitung mit Phaseniinderung mit Hilfe finiter 
Elemente verursacht das abnorme Verhalten der spezifischen WgrmekapazitHt im Bereich der 
Phasenlnderung besondere Probleme. Diese Probleme kiinnen durch Konzentration der Wgrmekapazitiit 
auf Knotenpunkte iibcrwunden werden, urn eine diagonale KapazitHts-Matrix zu erhalten. Auf diese Weise 
kann die spezifische Wgrmekapazitat eindeutig bercchnet werden. Das Prinzip der konzentrierten Kapazitiiten 
wurde mit der expliziten Enthalpie-Methode und Pham’s “three-level”-Methode kombiniert. Tests fiir 
Erstarrungsprobleme zeigen, dal3 bei Stefan-Problemen diese beiden weiterentwickelten Methoden genauer 

sind als die bisher verwendete “three-level”-Methode. 

MCl-IO.JIb30BAHBE COCPEJJOTOgEHHOfl TElIJIOEMKOCTI4 ITPI PEIIIEHMki 3AAAY 
TEIUIOIIPOBOAHOCTI4 C mA3OBbIM IIEPEXOAOM METOAOM KOHEYHbIX 

3JIEMEHTOB 

AmIoTauHa-npe pemc”AB 3aAaS TenJIOIIpOBOAIIOCTEI C@a3OBbIMIIel.k-ZXOAOM MCTOAOM KOHe'IHbIX We- 

MeHTOB BbIJbIBaeT 3aTpyAHeHIieCIIHryJIIIpHOe nOBeAeHUe TeIIJIOeMKOCTW B6JIII3u TO'IKH aa30BOrO IIepe- 

XOAa. 3TU TpyAHOCTII MOmHO 060tiTll, BBeAII COCpeAOTOqeHHyEO TenJIOeMKOCTb MaTepHaJIa B y3JIaX 

ceTKI4 14 nonysar TaKm4 o6pa3oM WaroHanbHym MaTpHuy TennoeMxocTeB. B 3~0~ cnyyae Tennoeh+ 
KOcTb OIIpcAcJ7ReTCII OAH03Ha'IHO. npaHuIIn COCpeAOTOYcHHOfi TeIIJIOeMKOCTIi BCIlOJlb30BtlJICll COB- 

MCCTHO C MCTOAOM IlBH0i-i 3HTaJIbnBll II MeTOAOMT~XypOBHeBOfi 3HTaJIbnUH @aMa.TeCTOBbIepaCYeTbI 

no 3aMepsaHmo noKa3ann,9~0 TaKofi noAxoA npu pememw 3aAas CTe+aHa aanaeT0-I 6onee ToSHbIM, 


